Linux Scheduling

Scheduling Policy and Algorithms, the schedule() Function
of the Linux Kernel version 2.4.20

Patrick Stahlberg
<Patrick.Stahlberg@hadiko.de>

$ld: speech.mgp,v 1.7 2002/12/17 10:59:17 patrick Exp $

Structure of this talk

® \\Vhat Is scheduling, why do we need it?
> concepts related to scheduling

® How Is scheduling done In Linux?
> policy
> algorithms

Part One

What Is scheduling?

‘What Is scheduling?

® Distribution of the resource ’processor’ to the competing
tasks

® |n this talk: only uniprocessor-scheduling

Lifecycle of a process

New Processes

Ready Queue

Active Process

Rlncked Prorcacceac

Classification of processes

® |[nteractive processes
® Batch processes
® Real-time processes

® |/O-bound
® CPU-bound

® These classifications are independent

Process Preemption

> Ability of an OS to take away CPU control of a process before it does
this voluntarily.

> Processes are assigned processing time guanta, a process will be
preempted when its quantum duration is passed.

> Scenario: a high-priority task enters the TASK _RUNNING state while a
low-priority task is active --> the low-priority task is preempted

> Linux features preemptive processes but not (yet) a preemptive kernel

‘Measures of good Scheduling (1)

® Fairness, equal treatment of processes
® Prevent "Starvation" of processes
® Use processing power efficiently

® Minimize overhead caused by scheduling itself

‘Measures of good Scheduling (2)

® For a Multiuser-Multitasking-OS:

> Interactive processes should have quick response times

> Desirable: intelligent treatment of 1/0- and CPU-bound processes

Part Two

Linux scheduling policy and algorithms

‘When is the scheduler called?

® Direct invocation
> During System Calls

> Mostly indirectly via sleep _on()
>e.g. when waiting for a resource

® | azy invocation

> After System Calls or interrupts

>if need_resched is set
>e.g. after sched set scheduler()

> The timer interupt also sets need_resched, making sure that schedule()
Is called frequently

Data structures used by the scheduler

® need resched

> A flag set by interrupt handling routines
> \When set, ret_from_intr() calls schedule()

® policy
> Scheduling policy, see following slide

® rt_priority
> Static priority field for real-time processses

® priority
> Base time quantum (SCHED_RR)
> Base priority (SCHED OTHER)

® counter
» CPLlJ time left for nrocess< in ctuirrent enoch

‘Scheduling classes

® |_inux provides three different scheduling algorithms called
‘'scheduling classes’

® Each process can be assigned one scheduling class

® Scheduling classes are: SCHED FIFO, SCHED RR,
SCHED OTHER

The SCHED_FIFO scheduling class

® Real-time processes

® Unlimited CPU time for processes given that there is no
higher-priority process

® Static priority

‘The SCHED_RR scheduling class

® Real-time processes
® Enhancement of SCHED FIFO that introduces time slicing

® Static priority

‘The SCHED_OTHER scheduling class

® All other processes
® Dynamic priority
® Time slicing

® Time slicing Is using epochs

Epochs

® Each non-realtime process is assigned a time quantum at
the beginning of an epoch.

® The epoch ends when all processes in the runqueue have
used up their time quantum.

The schedule() function

Very much simplified:

® |f previous process is a SCHED RR process which has
exhausted its time slice: assigns a new time slice to it and

puts it at the end of rungueue.

® Main scheduling loop:

> Loops through items of runqueue
> Calculates a ‘goodness’ value for each one of them
» Remembers the first task with highest goodness value

® Does a context switch to the chosen task.

Goodness of a process

® Calculated by the goodness() function

® Goodness of real-time tasks Is always higher than
goodness of a SCHED OTHER task (1000 + rt_priority)

® Goodness Is calculated like this for SCHED OTHER tasks:

If (p->mm == prev->mm)
return p->counter + 1 + 20 - p->nice;

else
return p->counter + 20 - p->nice,

Literature:

> kernel/sched.c
> http://en.tldp.org/LDP/tlk/kernel/processes.ntml#tth _sEc4.3

»sched_setscheduler(2)
> http://www.kernelnewbies.org/documents/schedule/
> http://www.ora.com/catalog/linuxkernel/chapter/ch10.html

"End. Questions?

"Switch to Mac?
Oh, | thought you said Crack...

...can | borrow $20

