
Perl Programming
A brief introduction to programming with Perl

(Variables, Flow Control, Regular Expressions).

GPN 2, Karlsruhe

Patrick Stahlberg <patrick@segv.de>

$Id: speech.mgp,v 1.7 2002/12/17 10:59:17 patrick Exp $

 Structure of this talk

 About Perl

 Data Types
 Scalars, Lists, Hashes

 Control Structures
 if, while, for, foreach

 I/O Functions
 Reding, Writing, Opening, Closing, Directory Access

 Regular Expressions
 brief overview

Part One

About Perl

 whatis perl

 1987: Initial release to the public

 $ whatis perl
 perl (1) - Practical Extraction and Report Language
 $

 specialized for reading text files and generating reports

 often used for system administration tasks

 designed to be ‘practical’ (‘‘There’s more than one way to
do it’’)

Part Two

Data Types

 Scalar Data

 Simplest form of data in perl

 Numbers
 23, 5.678, -42,...

 Strings
 "Hello World!\n"
 ’Hello World!\n’

 Variable Names
 $foo =! $Foo

 Numbers and strings are automatically converted back and forth, if needed.

 undef

 A symbolic value that is assigned initially to every variable.

 Indicates that the varaible hasn’t been asigned a value to.

 Operands on Scalar Data

 Numbers:
 ‘ordinary’ arithmetic operators
 + - / *

 exponentiation, modulus
 ** %

 comparison (numbers)
 < <= == != >= >

 Strings:
 concatenation, repetition
 . x

 comparison
 lt le eq ne ge gt

 Examples

 5 + 4
 returns 9

 23 % 5
 returns 3

 5 <= 23
 returns true

 "entropia is great" x 2
 returns "entropia is greatentropia is great"

 "test" eq ’test’
 returns true

 Functions for Scalar Data

 chop $string;
 Takes a string and removes its last character.

 chomp $string;
 Like chomp, but only removes newline.

 print $string;
 Writes the contents of $string to STDOUT.

 Examples

 Assume that $str contains "hello world!\n".

 chomp $str;
 # $str contains "hello world!"

 chomp $str;
 # $str contains "hello world!"

 chop $str;
 # $str contains "hello world"

 print $string;
 # prints "hello world"

 Assignment operators

 =
 Assigns the right argument to the left argument.

 +=
 Adds right argument to the left argument and stores the result in left

argument

 -= *= /= .=
 analogous

 ++ --
 Increments/Decrements its argument.

 Examples

 $a = $b = 42;
 # assigns 42 to both $a and $b

 $a -= 19;
 # $a is now 23

 $b--;
 # $b is now 41

 Lists

 Ordered list of scalar data.

 ("blue", "green", "red")

 Variable that contains a list (‘array’):
 @colors = ("blue", "green", "red");
 There are separate namespaces for scalar and list variables
 You don’t have to care about the size of an array. Perl will handle it

automatically.

 $colors[0] = "pink";
 Access certain elements of an array (Each element is identified by a

number, starting with 0).

 Array Operators

 (5 .. 23)

 List constructor operator. Generates a sorted list with each of
the numbers between 5 and 23 in it.

 =

 Assignment operator

 An easier way of entering lists

 @array = qw(blue green red);

 is the same as

 @array = ("blue", "green", "red");

 You may also write:

 @array = qw(blue
 green
 red);

 A special array

 @ARGV

 This array contains a list of command line arguments.

 Examples

 ($a,$b,$c) = (1,2,3);

 ($e,@array) = @array;

 Swap values of $a and $b using these operators:

 ($b, $a) = ($a, $b);

 Functions for list data

 pop/push
 Add/Delete elements at the end of a list

 shift/unshift
 Add/Delete elements at the beginning of a list

 reverse
 Reverse the order of a list

 sort
 Sort a list

 chomp
 chomp each element of a list

 split/join
 split a string into array elements and put them together again

 Examples

 @array = qw(1 3 2 4);

 push (@array, 2);
 # @array is now qw(1 3 2 4 2)
 $a = pop @array;
 # $a gets 2, @array is qw(1 3 2 4)
 unshift (@array, 8);
 # @array is now qw(8 1 3 2 4)
 $a = shift @array;
 # $a gets 8, @array is now qw(1 3 2 4)
 @array = sort @array;
 # @array is now qw(1 2 3 4)
 @array = reverse @array;
 # @array is now qw(4 3 2 1)

 Hashes

 Unordered lists of scalar data where each element is not
identified by a continuous number, but by an arbitrary scalar.

 (key1 => value1, key2 => value2)

 %hash
 Variable that contains a hash.

 $hash{key1} = value1;
 Access a specific element of the hash.

 Functions for hashes

 keys
 get a list of a hash’s keys

 values
 get a list containing the values

 delete
 delete an element of a hash

 Examples

 %hash = ("router" => "10.23.0.1",
 "www" => "10.23.0.2");

 print "$hash{’router’}\n";
 # prints "10.23.0.1", and newline

 @some_list = keys %hash;
 # @some_list contains ("www", "router")

 @another_list = values %hash;
 # @another_list contains ("10.23.0.2",
 # "10.23.0.1")

 delete $hash{"www");
 # Leaves only one key in %hash: "router"

Part Three

Control Structures

 if/unless

 if (<cond>) {
 <statement1>;
 <statement2>;
 } else {
 <statement3>;
 <statement4>;
 }

 Evaluate <statement1> and <statement2> if <cond> is true.
 Otherwise, evaluate <statement3> and <statement4>.

 The ‘else’ part can be omitted.

 ‘unless’ works the same, but inverts the meaning of <cond>.

 Example

 These two statements do the same:

 1:
 unless (cond) {
 bla;
 } else {
 blubb;
 }

 2:
 if (cond) {
 blubb;
 } else {
 bla;
 }

 while/until

 while (<cond>) {
 <statement1>;
 <statement2>;
 }

 Check if <cond> is true. If it is, evaluate <statement1> and
 <statement2>. Repeat these steps until <cond> is not true.

 With ‘while’ replaced by ‘until’: invert the meaning of <cond>

 do ... while/until

 do {
 <statement1>;
 <statement2>;
 } while (<cond>);

 Evaluate <statement1> and <statement2>. Check if <cond>
 is true. If it is, repeat these steps.

 Note the difference to the while loop on the previous page.

 ‘do ... until’ will behave as expected.

 Examples

 These two statements do the same:

 1:
 do {
 bla;
 } while (cond);

 2:
 bla;
 while (cond) {
 bla;
 }

 for

 for (<init_expr>; <cond>; <re-init_expr>) {
 <statement1>;
 <statement2>;
 }

 is (almost) the same as:

 <initial_expr>;
 while (<cond>) {
 <statement1>;
 <statement2>;
 <re-init_expr>;
 }

 Example

 This code adds 5 to each element of an array:

 for ($i=0; $i<$#array; $i++) {
 $array[$i] += 5;
 }

 foreach

 foreach $var (@list) {
 <statement1>;
 <statement2>;
 }

 Executes the statements for each element of the list. That
 means, in each iteration $var will be set to another element.

 Example

 %hash = ("router" => "10.23.0.1",
 "www" => "10.23.0.2");
 foreach $key (keys %hash) {
 print "$key has IP address $hash{$key}\n";
 }

 prints:

 www has IP address 10.23.0.2
 router has IP address 10.23.0.1

 Expression Modifiers (1)

 Conditionally evaluate <expr>:

 <expr> if <cond>;
 <expr> unless <cond>;

 Conditionally (and maybe repeatedly) evaluate <expr>:

 <expr> while <cond>;
 <expr> until <cond>;

 Example:

 die "Error: \$a is not equal to \$b!\n"
 unless ($a == $b);

 Expression Modifiers (2)

 <cond> ? <expr1> : <expr2>

 If <cond> is true, evaluate <expr1>. Otherwise, evaluate
 <expr2>.

 Example:

 print "Time left: $time " .
 ($time == 1) ? "minute." : "minutes.";

Part Four

I/O Functions

 <STDIN>

 In scalar context: get one line of data from standard input

 In list context: get complete data (up to end of file) from
standard input as a list of lines

 The operator ‘<>’ (diamond operator) works like ‘<STDIN>’
 but gets the contents of files whose names are in @ARGV,
 if there are any.

 Example

 $i = 1;
 while ($line = <STDIN>) {
 print "$i: $line";
 $i++;
 }

 This program prints the lines from standard input with
 line numbers.

 while ($line = <>) {
 print $line;
 }

 This program works like the UNIX command ‘cat’.

 Filehandles

 A filehandle is a name that identifies an open file in a perl
 program.

 It is convention to use UPPERCASE letters for filehandles.

 Opening and Closing files

 open (FH, "$filename");

 Open file $filename. The filename string may be prepended
 by ‘<’ or ‘>’ to specify whether this file will be opened for
 writing or for reading.

 close (FH);

 Close the file. All opened file are automatically closed when
 the program exits.

 Reading and Writing

 print FH $string;

 Write $string into the file.

 $string = read (FH);

 Read a line from the file and store it in $string.

 Example

 open(INFILE, "<$ARGV[0]")
 or die "open failed: $!";

 while ($line = <INFILE>) {
 unshift (@array, $line);
 }

 close INFILE;

 open(OUTFILE, ">$ARGV[1]")
 or die "open failed: $!";

 foreach $line (@array) {
 print OUTFILE $line;
 }

 close OUTFILE;

 Accessing directories

 opendir
 Open a directory

 readdir
 Return a directory entry

 closedir
 Close a directory

Part Four

Regular Expressions

 man perlre

 Sorry.

Part Five

Misc

 Functions

 <statement1>;
 &function;
 <statement2>;
 ...

 sub function {
 <substatement1>;
 <substatement2>;
 }

 use strict;

 Makes perl do some error checking. Perl will not allow you
 to run your program in some cases where it would run the
 program without ‘use strict’. It may also print more warnings
 during execution.

 For example, you will have to declare each variable using
 ‘my $var;’ before using it.

 Using this option is very much recommended!

 Literature:

 perl(1)

 Randal Schwartz, Tom Christiansen & Larry Wall:
Learning Perl, O’Reilly 1997

 End. Questions?

 You can download these slides at

 http://segv.de/~patrick/papers/gpn2_perl/

